2. 罗祎玮,陈柏存,傅华康,等.聚对苯二甲酸乙二醇酯发泡材料开发及应用进展[J].化工生产与技术,2021,27(6):34‒38,10.
LUO Yiwei,CHEN Baicun,FU Huakang,et al. Development and application of polyethylene terephthalate foam materials[J]. Chemical Production and Technology,2021,27(6):34‒38,10.
3 王智军,王静刚,庞永艳,等. PEFT等温结晶动力学及多重熔融行为[J].工程塑料应用,2022,50(7):110‒116,127.
WANG Zhijun,WANG Jinggang,PANG Yongyan,et al. Isothermal crystallization kinetics and multiple melting behavior of PEFT copolyesters[J]. Engineering Plastics Application,2022,50(7):110‒116,127.
4. PAN J J,ZHANG D,WU M,et al. Impacts of carbonaceous particulates on extrudate semicrystalline polyethylene terephthalate foams:nonisothermal crystallization,rheology,and infrared attenuation studies[J]. Industrial & Engineering Chemistry Research,2020,59(35):15 586-15 597.
5. WANG Z Z, XU D W, BAI S B,et al. Foaming behaviors and mechanical properties investigation of high-strength polyethylene terephthalate/polycarbonate bead foam[J]. Journal of Applied Polymer Science,2023,140(42). DOI:10.1002/app.54558.
6. JIANG C,HAN S,CHEN S H,et al. Crystallization-induced microcellular foaming behaviors of chain-extended polyethylene terephthalate[J]. Cellular Polymers,2020,39(6):223‒237.
7. YAO S,GUO T H,LIU T,et al. Good extrusion foaming performance of long‐chain branched PET induced by its enhanced crystallization property[J]. Journal of Applied Polymer Science,2020,137(41). DOI:10.1002/app.49268.
8. GE Y K,YAO S,XU M L,et al. Improvement of poly(ethylene terephthalate) melt-foamability by long-chain branching with the combination of pyromellitic dianhydride and triglycidyl isocyanurate[J]. Industrial & Engineering Chemistry Research,2019,58(9):3 666‒3 678.
9. YAN H C,YUAN H T,GAO F,et al. Modification of poly(ethylene terephthalate) by combination of reactive extrusion and followed solid-state polycondensation for melt foaming[J].Journal of Applied Polymer Science,2015,132(44). DOI:10.1002/app.42708.
10. YANG Z P, XIN C L, MUGHAL W,,et al. High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming[J]. Journal of Applied Polymer Science,2018,135(8). DOI:10.1002/app.45805.
11. JIANG C, HAN S, CHEN S H,et al. The role of PTFE in-situ fibrillation on PET microcellular foaming[J]. Polymer,2021,212. DOI:10.1016/j.polymer.2020.123171.
12. XIA T,XI Z H,LIU T,et al. Solid state foaming of poly(ethylene terephthalate) based on periodical CO2-renewing sorption process[J]. Chemical Engineering Science,2017,168:124‒136.
13. WANG Z J,WANG J G,PANG Y Y,et al. To effectively tune the cell structure of poly(ethylene 2,5-furandicarboxylate-co-ethylene terephthalate) copolyester foams via conducting a prior isothermal melt crystallization[J]. Industrial & Engineering Chemistry Research,2023,62(3):1 404‒1 414.
14. WANG Z J,WANG J G,PANG Y Y,et al. Cell structure-tunable PEFT copolyester foams prepared via conducting a prior cold crystallization[J]. Journal of Materials Science,2023,58:2 025‒2 038.
15. ZHAO J C,WANG G L,WANG C D,et al. Ultra-lightweight,super thermal-insulation and strong PP/CNT microcellular foams[J]. Composites Science and Technology,2020,191. DOI:10.1016/j.compscitech.2020.108084.
16. CAO Y Y,PANG Y Y,DONG X,et al. To clarify the resilience of PEBA/MWCNT foams via revealing the effect of the nanoparticle and the cellular structure[J]. ACS Applied Polymer Materials,2021,3(8):3 766‒3 775.
17. SUN T C,DONG X,DU K,et al. Structural and thermal stabilization of isotactic polypropylene/organomontmorillonite/poly(ethylene-co-octene) nanocomposites by an elastomer component[J]. Polymer,2008,49(2):588‒598.
18. LIU W,PANG Y Y,WU M H,et al. Dependence of the foaming window of a polystyrene/poly(methyl methacrylate) blend on structural evolution driven by phase separation[J]. Polymer,2019,166:63‒71.
19. PANG Y Y,ZHANG X,GUO B J,et al. Unprecedented cell structure variation in multilayered alternating PS/PMMA foams[J]. Polymer,2021,237. DOI:10.1016/j.polymer.2021.124386.
20. GUO B J,PANG Y Y,CAO X,et al. A creative approach to prepare structure-tunable multilayered PMMA/PS/PMMA foams[J]. Polymer,2020,209. DOI:10.1016/j.polymer.2020.123061.
21. JI G Y,ZHAI W T,LIN D P,et al. Microcellular foaming of poly(lactic acid)/silica nanocomposites in compressed CO2:critical influence of crystallite size on cell morphology and foam expansion[J]. Industrial & Engineering Chemistry Research,2013,52(19):6 390‒6 398.
22. TANG W Y,LIAO X,ZHANG Y,et al. Cellular structure design by controlling rheological property of silicone rubber in supercritical CO2[J]. The Journal of Supercritical Fluids,2020,164. DOI:10.1016/j.supflu.2020.104913.
23. LI Y,YIN D X,LIU W,et al. Fabrication of biodegradable poly(lactic acid)/carbon nanotube nanocomposite foams:Significant improvement on rheological property and foamability[J]. International Journal of Biological Macromolecules,2020,163:1 175‒1 186.
24. PANG Y Y,CAO Y Y,ZHENG W G,et al. A comprehensive review of cell structure variation and general rules for polymer microcellular foams[J]. Chemical Engineering Journal,2022,430. DOI:10.1016/j.cej.2021.132662.
25. WANG Z J,WANG J G,PANG Y Y,et al. Dependence of the foaming window of poly(ethylene terephthalate-co-ethylene 2,5-furandicarboxylate) copolyesters on FDCA content[J]. Polymer,2022,254. DOI:10.1016/j.polymer.2022.125101.
26. YAN Z H,LIAO X,HE G J,et al. Green method to widen the foaming processing window of PLA by introducing stereocomplex crystallites[J]. Industrial & Engineering Chemistry Research,2019,58(47):21 466‒21 475.